Deutsche MTM-Vereinigung e.V.

## Prof. Dr. Peter Kuhlang





# Human work in the "4.0" age

# connecting the digital to real world!

**1st International E-Mas Conference** 

March 21, 2019

Leon, Guanajuato, Mexiko

Identify the relevant aspects...





© DMTMV

Can we trust or "proof" digital motion data?



#### Are Motion Capturing and Human Simulation useful?

- Individualised work method (varying from cycle to cycle)
- Does planning work (work measurement, work standards) make sense in 4.0 times?
  - Do we need information about working times?
  - Do we need ergonomic workplace design?
  - If yes?
  - How?

Agenda

- Introduction
  - MTM Methods-Time Measurment
  - EAWS Ergonomic Assessment Worksheet
- Motion Capturing and Human Simulation
- Linking digital to real world!
  - Transfer of digital motion data into MTM analysis
- Q & A







## The two dimensions/aspects of MTM



# MTM Methods-Time Measurement

### instrumental: methodology



- Process language, accepted norm/standard performance
- Worldwide approved standard
- Holistic description, evaluation and design or work systems and processes

#### institutional: organisation



- training, research, software & consulting one stop
- Worldwide unified trainings and certificates



# How to apply MTM? How to create a work standard?

Plan or observe operation

Assemble connection plug to compressor and tighten with torque wrench.



Modeled standard operation incl. standard time (285 TMU  $\approx$  10s)

| D   | Distance       | e (cm) | 0 ≤ 20                | 20 ≤          | ≤ 50                       | 50 :     | ≤ 80       | MT<br>(exam       | <b>M-Dataca</b> | a <b>rd</b><br>M-UAS |
|-----|----------------|--------|-----------------------|---------------|----------------------------|----------|------------|-------------------|-----------------|----------------------|
|     |                |        |                       |               |                            |          |            | Bas               | ic Operatio     | ons)                 |
| Ge  | et and Pl      | ace    | AF1<br>(40 TMU)       | Al<br>(65     | F2<br>TMU)                 | A<br>(80 | F3<br>TMU) |                   |                 |                      |
|     |                |        |                       |               |                            |          |            |                   |                 |                      |
| На  | Handle Aid     |        | HB1<br>(40 TMU)       | HI<br>(60     | HB2 HB3<br>D TMU) (75 TMU) |          | B3<br>TMU) | Choose            |                 | ocs and              |
|     |                |        |                       |               |                            |          |            | ] model operation |                 |                      |
|     |                |        |                       |               |                            |          |            |                   |                 | ration               |
| M   | итм            | C P    | MTM<br>Planning Analy | And<br>sis XI | Produc                     | tion An  | alysis     | File No<br>Shee   | o.              | -                    |
|     | Code           | DZ     | 705.                  | 0             | 5.                         |          | 5          |                   |                 | -                    |
| De  | escription     | Asser  | nble connecti         | on plu        | g                          |          |            |                   |                 | _                    |
| No. | Descriptio     | 'n     |                       |               | Code                       |          | TMU        | QxF               | Total TMU       |                      |
| 1   |                |        | Plug to t             | I A           | F2                         | 65       | 1          | 65                |                 |                      |
| 1   | Turn on        |        |                       |               |                            | A2       | 15         | 5                 | 75              |                      |
| 1   | Torque wrench  |        |                       |               |                            | IB2      | 60         | 1                 | 60              |                      |
| 1   | 1. Turn        |        |                       |               |                            | A1       | 5          | 1                 | 5               |                      |
| 1   | 23. Turn       |        |                       |               |                            | C1       | 30         | 2                 | 60              |                      |
| 1   | Turn to torque |        |                       |               |                            | D        | 20         | 1                 | 20              | <u> </u>             |
|     |                |        |                       |               |                            |          |            | 1                 | Σ 285           |                      |
|     |                |        |                       |               |                            |          |            |                   |                 |                      |

# EAWS - Ergonomic Assessment WorkSheet



Methodology to **assess** the **biomechanical risk** of work based on **physical loads** of the **whole body** and the **upper limbs**.



EAWS can be applied

- prospectively, preventively and correctively and
- is an effective tool to identify ergonomic (biomechanical) risk.

Intensity of

load



## Change → towards work design - "prospective approaches"



Agenda

- Introduction
  - MTM Methods-Time Measurment
  - EAWS Ergonomic Assessment Worksheet
- Motion Capturing and Human Simulation
- Linking digital to real world!
  - Transfer of digital motion data into MTM analysis
- Q & A







9

# Motion Capturing suit AXS-Anzugs













Ergonomic assessment based on Motion Capturing

#### 1. Motion data -> 2. Human model -> 3. Motion determination -> 4. Ergonomic assessment



MTN



# 1. Motion data: tracking with an MoCap suit (AXS)



source: Miele

![](_page_12_Picture_0.jpeg)

# 2. Human Model & 3. Motion determination

![](_page_12_Figure_2.jpeg)

## 4. Ergonomic assessment

- Identify and reduce awkward loads
- Synchronize planning and reality
- Exercise assembly operations

![](_page_13_Picture_4.jpeg)

|                        | * L                               |                                     |                                                           |                       |  |  |  |
|------------------------|-----------------------------------|-------------------------------------|-----------------------------------------------------------|-----------------------|--|--|--|
| Analysiert wurde der A | Arbeitsinhalt eines Werkers, weld | cher insgesamt 54,00 s andauert. Zu | r Analyse wurde das EAWS Verfahren in der Version E 1.3.5 | 2016-05-25 verwendet. |  |  |  |
| Auswertung             |                                   |                                     |                                                           |                       |  |  |  |
| Ganzer Körper          |                                   | Obere Extremitäten                  |                                                           |                       |  |  |  |
| -                      | Haltung                           | 10,0 Punkte                         | Aufgabe                                                   | 1,6 Punkt             |  |  |  |
|                        | + Kräfte                          | 0,0 Punkte                          | + Hand/Arm/Schulter                                       | 0.0 Punkt             |  |  |  |
|                        | + Lasten                          | 35,0 Punkte                         | + Weitere Faktoren                                        | 0,0 Punkt             |  |  |  |
|                        | + Extrapunkte                     | 0,0 Punkte                          | * Dauer                                                   | 6,5 Punkt             |  |  |  |
| $\bigcirc$             | Geramtnunkte                      | 45.0 Dunkte                         | Gecamtruinkte                                             | 10 E Dueld            |  |  |  |

![](_page_13_Picture_6.jpeg)

![](_page_14_Picture_0.jpeg)

# Simulation (ema) – manual operations, workplace

![](_page_14_Picture_2.jpeg)

Transfer of digital motion data into MTM analysis

Simulation analysis (digital world) → As-is and Planning analysis (real world)

![](_page_15_Figure_2.jpeg)

ΜΤΝ

# Thank you for your attention!

![](_page_16_Picture_1.jpeg)

![](_page_16_Picture_2.jpeg)

### Contact

![](_page_17_Picture_1.jpeg)

www.dmtm.com/newsletter

![](_page_17_Picture_3.jpeg)

![](_page_17_Picture_4.jpeg)

**Prof. Dr. habil. Peter Kuhlang** Head of MTM-Institute and International Affairs Technical Director International MTM-Directorate

Deutsche MTM-Vereinigung e.V. Elbchaussee 352 22609 Hamburg, Deutschland Tel.: +49 40 822779-0 www.dmtm.com #MTMProf Peter Kuhlang